Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Immunol ; 13: 997343, 2022.
Article in English | MEDLINE | ID: covidwho-2325367

ABSTRACT

Repeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response to third or fourth vaccination in KTR. We developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in previously seronegative, COVID-19-naïve KTR. Using 20 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), least absolute shrinkage and selection operator (LASSO)-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 590 vaccinations were used. External validation was performed in four independent, international validation cohorts comprising 191, 184, 254, and 323 vaccinations, respectively. LASSO-regularized LR performed on the whole development dataset yielded a 20- and 10-variable model, respectively. External validation showed AUC-ROC of 0.840, 0.741, 0.816, and 0.783 for the sparser 10-variable model, yielding an overall performance 0.812. A 10-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions whether to modulate immunosuppressive therapy before additional active vaccination, or to perform passive immunization to improve protection against COVID-19 in previously seronegative, COVID-19-naïve KTR.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Vaccines , Vaccination
2.
J Infect Dis ; 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2304836

ABSTRACT

Vaccination against SARS-CoV-2 is an important prophylactic measure in kidney transplant recipients (KTRs), however, the immune response is often impaired. Here, we examined the T cell immune response against SARS-CoV-2 in 148 KTRs after three or four vaccine doses including 35 KTRs with subsequent SARS-CoV-2 infection. The frequency of spike-specific T cells was lower in KTRs compared to immunocompetent controls and correlated with the level of spike-specific antibodies. Positive predictors for detection of vaccine-induced T cells were detection of spike-specific antibodies, heterologous immunization with mRNA and a vector vaccine and longer time past transplant. In vaccinated KTRs with subsequent SARS-CoV-2 infection, the T-cell response was greatly enhanced and was significantly higher than in vaccinated KTRs without SARS-CoV-2 infection. Overall, the data show a correlation between impaired humoral and T-cell immunity to SARS-CoV-2 vaccination and provide evidence for greater robustness of hybrid immunity in KTRs.

3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2073563

ABSTRACT

Repeated vaccination against SARS-CoV-2 increases serological response in kidney transplant recipients (KTR) with high interindividual variability. No decision support tool exists to predict SARS-CoV-2 vaccination response to third or fourth vaccination in KTR. We developed, internally and externally validated five different multivariable prediction models of serological response after the third and fourth vaccine dose against SARS-CoV-2 in previously seronegative, COVID-19-naïve KTR. Using 20 candidate predictor variables, we applied statistical and machine learning approaches including logistic regression (LR), least absolute shrinkage and selection operator (LASSO)-regularized LR, random forest, and gradient boosted regression trees. For development and internal validation, data from 590 vaccinations were used. External validation was performed in four independent, international validation cohorts comprising 191, 184, 254, and 323 vaccinations, respectively. LASSO-regularized LR performed on the whole development dataset yielded a 20- and 10-variable model, respectively. External validation showed AUC-ROC of 0.840, 0.741, 0.816, and 0.783 for the sparser 10-variable model, yielding an overall performance 0.812. A 10-variable LASSO-regularized LR model predicts vaccination response in KTR with good overall accuracy. Implemented as an online tool, it can guide decisions whether to modulate immunosuppressive therapy before additional active vaccination, or to perform passive immunization to improve protection against COVID-19 in previously seronegative, COVID-19-naïve KTR.

SELECTION OF CITATIONS
SEARCH DETAIL